Properties

Label 648.572.2.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:A_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{2}, d^{3}, c^{3}, b, c^{2}d^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $(C_2\times C_6\times \He_3).S_3^3$
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^3:S_4$
Complements:$C_2$
Minimal over-subgroups:$C_3^3:S_4$
Maximal under-subgroups:$C_3\times C_6^2$$C_3^2\times A_4$$C_3^2:A_4$$C_3^2:A_4$$C_3^2:A_4$$C_3\times \He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3:S_4$