Properties

Label 648.297.6.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, d^{2}, d^{3}, c^{3}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^4.C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6.S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^2:D_{18}$
Minimal over-subgroups:$C_2\times C_3^2:C_{18}$$C_6:S_3^2$
Maximal under-subgroups:$C_3^2\times C_6$$C_3^2:C_6$$C_3^2:C_6$$C_6:S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Möbius function$3$
Projective image$C_3^2:D_{18}$