Subgroup ($H$) information
| Description: | $C_3^2:C_6$ | 
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $a, c^{3}, b^{2}, d^{2}$ | 
| Derived length: | $2$ | 
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2\times C_3^2:D_{18}$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $D_6$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^4.C_3.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| $\operatorname{res}(S)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| $W$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
Related subgroups
Other information
| Möbius function | $-6$ | 
| Projective image | $C_2\times C_3^2:D_{18}$ | 
