Properties

Label 648.280.4.a1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_9$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, c^{2}, b^{4}, d^{2}, b^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^2:D_9$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.(S_3\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3:D_9$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^2:D_9$
Normal closure:$C_6^2:D_9$
Core:$C_3^3$
Minimal over-subgroups:$C_6^2:D_9$
Maximal under-subgroups:$C_3^2:C_9$$C_3^2:C_6$$C_3\times D_9$$C_3\times D_9$$C_3\times D_9$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$C_3^2.S_4$