Subgroup ($H$) information
| Description: | $C_3^2:D_9$ |
| Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$a, c^{2}, b^{4}, d^{2}, b^{3}$
|
| Derived length: | $3$ |
The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_6^2:D_9$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.(S_3\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| $\operatorname{Aut}(H)$ | $C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| $\operatorname{res}(S)$ | $C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
| $W$ | $C_3:D_9$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | $-1$ |
| Projective image | $C_3^2.S_4$ |