Properties

Label 648.239.3.b1.b1
Order $ 2^{3} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{72}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $a^{9}, b, a^{36}, a^{8}, a^{18}, a^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^2:C_{72}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\ASL(2,3).C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$C_3:C_{72}$
Normal closure:$C_3^2:C_{72}$
Core:$C_3\times C_{36}$
Minimal over-subgroups:$C_3^2:C_{72}$
Maximal under-subgroups:$C_3\times C_{36}$$C_3:C_{24}$$C_{72}$
Autjugate subgroups:648.239.3.b1.a1648.239.3.b1.c1648.239.3.b1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:S_3$