Subgroup ($H$) information
| Description: | $D_{10}.C_2^4$ |
| Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Index: | \(2\) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
11 & 30 \\
0 & 33
\end{array}\right), \left(\begin{array}{rr}
1 & 20 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
29 & 0 \\
0 & 29
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
20 & 19
\end{array}\right), \left(\begin{array}{rr}
1 & 30 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 32 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 9
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_{10}.C_2^5$ |
| Order: | \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^5\times D_5).C_2^6.C_2^2.\PSL(2,7)$ |
| $\operatorname{Aut}(H)$ | $F_5\times C_2^6:(C_2\times S_4)$, of order \(61440\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5\times C_2^6:(C_2\times S_4)$, of order \(61440\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_2^4$ | |||
| Normalizer: | $D_{10}.C_2^5$ | |||
| Complements: | $C_2$ $C_2$ | |||
| Minimal over-subgroups: | $D_{10}.C_2^5$ | |||
| Maximal under-subgroups: | $D_{10}.D_4$ | $C_{20}:C_2^3$ | $C_2^3\times F_5$ | $C_2^3.D_4$ |
Other information
| Number of subgroups in this autjugacy class | $28$ |
| Number of conjugacy classes in this autjugacy class | $28$ |
| Möbius function | $-1$ |
| Projective image | $C_2^2\times F_5$ |