Properties

Label 640.19151.16.bn1
Order $ 2^{3} \cdot 5 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_5$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 11 & 24 \\ 20 & 23 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 20 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{10}.(C_4\times D_4)$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_4\times C_2^8.C_2^3)$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{W}$\(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_{10}:C_4^2$
Normal closure:$C_2^2\times F_5$
Core:$D_{10}$
Minimal over-subgroups:$C_2^2\times F_5$$C_2^2\times F_5$
Maximal under-subgroups:$D_{10}$$F_5$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed