Properties

Label 64.92.1.a1.a1
Order $ 2^{6} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: $1$
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 15 & 0 \\ 8 & 15 \end{array}\right), \left(\begin{array}{rr} 7 & 2 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 10 \\ 5 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\OD_{16}:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times D_4^2):D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $(C_2\times D_4^2):D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\OD_{16}:C_2^2$
Complements:$C_1$
Maximal under-subgroups:$C_2^2\times D_4$$C_2\times \OD_{16}$$C_2\times \OD_{16}$$\OD_{16}:C_2$$\OD_{16}:C_2$$\OD_{16}:C_2$$\OD_{16}:C_2$

Other information

Möbius function$1$
Projective image$C_2^2:C_4$