Properties

Label 64.54.4.b1.a1
Order $ 2^{4} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ab, b^{4}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $Q_{64}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{32}:C_8$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_{32}$
Normal closure:$Q_{32}$
Core:$C_8$
Minimal over-subgroups:$Q_{32}$
Maximal under-subgroups:$C_8$$Q_8$
Autjugate subgroups:64.54.4.b1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{16}$