Properties

Label 64.54.2.a1.a1
Order $ 2^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(2\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab, b^{30}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, maximal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $Q_{64}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{32}:C_8$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_{64}$
Minimal over-subgroups:$Q_{64}$
Maximal under-subgroups:$C_{16}$$Q_{16}$
Autjugate subgroups:64.54.2.a1.b1

Other information

Möbius function$-1$
Projective image$D_{16}$