Subgroup ($H$) information
| Description: | $C_4\times C_8$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(2\) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Generators: | $a, c$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_8:Q_8$ | 
| Order: | \(64\)\(\medspace = 2^{6} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \) | 
| $\operatorname{Aut}(H)$ | $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_4\times C_8$ | ||
| Normalizer: | $C_8:Q_8$ | ||
| Minimal over-subgroups: | $C_8:Q_8$ | ||
| Maximal under-subgroups: | $C_4^2$ | $C_2\times C_8$ | $C_2\times C_8$ | 
Other information
| Möbius function | $-1$ | 
| Projective image | $C_2^3$ | 
