Properties

Label 629856.fm.864.A
Order $ 3^{6} $
Index $ 2^{5} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(3\)
Generators: $\langle(5,13,6), (1,12,4)(5,6,13)(9,17,11), (5,13,6)(8,16,10), (2,7,3)(5,13,6)(14,15,18), (5,6,13)(14,18,15), (9,11,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^8.(C_4\times S_4)$
Order: \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^2:(C_4\times S_4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^7.A_4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $\GL(6,3)$, of order \(84129611558952960\)\(\medspace = 2^{13} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \)
$W$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_3^8$
Normalizer:$C_3^8.(C_4\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^8.(C_4\times S_4)$