Properties

Label 629856.fm
Order \( 2^{5} \cdot 3^{9} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $27$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27), (1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27) >;
 
Copy content gap:G := Group( (1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27), (1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27)', '(1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(754284638602640781648587746333364614348099796072482012547043888141730072267597539754548640212929111040421855380240698429557399024838686731280545888690825608774586715100764694457092900730811607922383583322868677240703312048924744566955485727439717925507844164133692442306553127392764288450033235992496026276998184134758999770447966124465328753691264998704328017403662157503,629856)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 

Group information

Description:$C_3^8.(C_4\times S_4)$
Order: \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^7.A_4.C_{12}.C_2^4$, of order \(5038848\)\(\medspace = 2^{8} \cdot 3^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12
Elements 1 2619 12392 96228 174528 46656 297432 629856
Conjugacy classes   1 5 120 10 126 6 26 294
Divisions 1 5 78 6 84 4 13 191
Autjugacy classes 1 5 35 6 45 2 9 103

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{6}=d^{6}=e^{6}=f^{3}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 28, 2130927, 8143466, 2842660, 114, 4944131, 14805745, 19593844, 14705058, 5537312, 2299756, 839220, 35550149, 21630691, 3355161, 4246499, 189313, 243, 11275494, 4896898, 455762, 24409735, 31522197, 3544163, 4904977, 376047, 305837, 89131, 329, 24821000, 54468, 748504, 3102, 56972169, 362903, 6894757, 50465, 10159, 1787, 5987530, 598790, 1164306, 33344, 16656231, 3338563, 72657, 24301, 72963084, 6604442, 19105672, 3151580, 183538, 59078, 1354765, 60455835, 6858473, 35349, 1679411, 190623]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(754284638602640781648587746333364614348099796072482012547043888141730072267597539754548640212929111040421855380240698429557399024838686731280545888690825608774586715100764694457092900730811607922383583322868677240703312048924744566955485727439717925507844164133692442306553127392764288450033235992496026276998184134758999770447966124465328753691264998704328017403662157503,629856); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(754284638602640781648587746333364614348099796072482012547043888141730072267597539754548640212929111040421855380240698429557399024838686731280545888690825608774586715100764694457092900730811607922383583322868677240703312048924744566955485727439717925507844164133692442306553127392764288450033235992496026276998184134758999770447966124465328753691264998704328017403662157503,629856)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(754284638602640781648587746333364614348099796072482012547043888141730072267597539754548640212929111040421855380240698429557399024838686731280545888690825608774586715100764694457092900730811607922383583322868677240703312048924744566955485727439717925507844164133692442306553127392764288450033235992496026276998184134758999770447966124465328753691264998704328017403662157503,629856)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Permutation group:Degree $27$ $\langle(1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27), (1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27) >;
 
Copy content gap:G := Group( (1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27), (1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,7,12,3)(5,8,13,16)(6,10)(9,14,11,15,17,18)(19,20,22)(21,24,23,26,25,27)', '(1,3,6,11,14,16)(2,5,9,15,8,4,7,13,17,18,10,12)(19,21,22,25,20,23)(24,27)'])
 
Transitive group: 36T32959 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8.S_4)$ . $C_4$ $(C_3^8.C_4)$ . $S_4$ $C_3^8$ . $(C_4\times S_4)$ $(C_3^8.C_2^3)$ . $D_6$ all 27

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 30 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^8.(C_4\times S_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^8.A_4$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3$ $G/\Phi \simeq$ $C_3^7.(C_4\times S_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^8$ $G/\operatorname{Fit} \simeq$ $C_4\times S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8.(C_4\times S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^7$ $G/\operatorname{soc} \simeq$ $C_2^3.S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^7.C_3^2$

Subgroup diagram and profile

Series

Derived series $C_3^8.(C_4\times S_4)$ $\rhd$ $C_3^8.A_4$ $\rhd$ $C_3^7:C_2^2$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8.(C_4\times S_4)$ $\rhd$ $C_3^6.C_6^2:C_3.C_2^2$ $\rhd$ $C_3^7.(C_6\times A_4)$ $\rhd$ $C_3^8.A_4$ $\rhd$ $C_3^7.A_4$ $\rhd$ $C_3^7:C_2^2$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8.(C_4\times S_4)$ $\rhd$ $C_3^8.A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $294 \times 294$ character table is not available for this group.

Rational character table

The $191 \times 191$ rational character table is not available for this group.