Properties

Label 62400.a.3900.a1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(3900\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{lll}\alpha & \alpha^{3} & \alpha^{13} \\ 1 & \alpha^{6} & 1 \\ \alpha^{12} & 0 & \alpha^{12} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{3} & \alpha^{4} & \alpha^{10} \\ \alpha^{5} & \alpha^{5} & \alpha \\ 1 & \alpha^{5} & \alpha^{12} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{8} & \alpha^{8} & \alpha^{12} \\ \alpha^{2} & \alpha^{11} & \alpha^{5} \\ \alpha & \alpha^{4} & \alpha^{9} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{7} & \alpha^{14} & \alpha^{5} \\ 1 & \alpha^{10} & \alpha^{11} \\ \alpha^{10} & 1 & \alpha^{13} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\SU(3,4)$
Order: \(62400\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,4)$, of order \(249600\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_4^2$
Normalizer:$C_4^2.A_4$
Normal closure:$\SU(3,4)$
Core:$C_1$
Minimal over-subgroups:$C_4^2:C_3$$C_4.Q_8$
Maximal under-subgroups:$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$325$
Möbius function$0$
Projective image$\SU(3,4)$