Subgroup ($H$) information
| Description: | $C_2\times C_{52}$ |
| Order: | \(104\)\(\medspace = 2^{3} \cdot 13 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
| Generators: |
$a, c^{2}, a^{2}, c^{13}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, abelian (hence metabelian and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $D_{26}:C_{12}$ |
| Order: | \(624\)\(\medspace = 2^{4} \cdot 3 \cdot 13 \) |
| Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \) |
| $\operatorname{Aut}(H)$ | $D_4\times C_{12}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times C_{12}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
| $W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $C_{13}:C_6$ |