Properties

Label 624.138.12.e1.b1
Order $ 2^{2} \cdot 13 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}:C_4$
Order: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $a^{3}b^{3}c, c^{2}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{26}:C_{12}$
Order: \(624\)\(\medspace = 2^{4} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{13}:C_6$, of order \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_{26}:C_{12}$
Complements:$C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$
Minimal over-subgroups:$C_{13}:C_{12}$$C_{26}:C_4$$C_4\times D_{13}$$C_4\times D_{13}$
Maximal under-subgroups:$C_{26}$$C_4$
Autjugate subgroups:624.138.12.e1.a1

Other information

Möbius function$-2$
Projective image$D_{26}:C_6$