Properties

Label 624.138.52.a1.d1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{2}c^{13}, b^{3}c^{13}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{26}:C_{12}$
Order: \(624\)\(\medspace = 2^{4} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$C_2^2\times C_{12}$
Normal closure:$C_{26}:C_6$
Core:$C_2$
Minimal over-subgroups:$C_{26}:C_6$$C_2^2\times C_6$
Maximal under-subgroups:$C_6$$C_6$$C_6$$C_2^2$
Autjugate subgroups:624.138.52.a1.a1624.138.52.a1.b1624.138.52.a1.c1

Other information

Number of subgroups in this conjugacy class$13$
Möbius function$0$
Projective image$C_{52}:C_6$