Properties

Label 62208.g.24.DY
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.\SOPlus(4,2)$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(3,5,6,4)(13,16,18,20,17,19), (13,18,17), (1,2,8,7)(3,4,6,5)(13,18)(19,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^3.C_2^6.C_2^2$
$W$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3.(S_3\times D_4)$
Normal closure:$C_6^3.(S_3\times S_4)$
Core:$C_3^3\times C_6$
Minimal over-subgroups:$C_3^2:C_4^2:S_3^2$$C_3^2:D_{12}:D_{12}$$C_3\times C_6^3.D_4$
Maximal under-subgroups:$C_6^2.S_3^2$$C_3^2:C_{12}^2$$C_3^4:\OD_{16}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$