Properties

Label 62208.ds.24.BG
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6^2:S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{2}d^{3}e^{5}f^{3}g, g^{3}, f^{2}g^{2}, d^{3}e^{3}f^{3}g^{3}, e^{2}, c^{2}d^{5}f^{2}g^{2}, f^{3}g^{3}, e^{3}, g^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4^2:S_3^2:D_6$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5^3$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $(C_3\times A_4^2).D_6^2$
$W$$C_5^4:D_4:C_2$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_2^4.C_3^4.C_6.C_2$
Normal closure:$(C_2\times C_6^3):S_3^2$
Core:$C_2\times C_6^3$
Minimal over-subgroups:$(C_3^2\times A_4^2):C_6$$C_6^3:S_4$$(S_3\times C_6^2):S_4$$(S_3\times C_6^2):S_4$
Maximal under-subgroups:$C_3\times C_6^2:A_4$$C_6^3.C_2^2$$C_6^2:S_4$$C_6^2:S_4$$C_3^3:S_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4^2:S_3^2:D_6$