Subgroup ($H$) information
| Description: | $C_3\times C_6^2:S_4$ |
| Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ac^{2}d^{3}e^{5}f^{3}g, g^{3}, f^{2}g^{2}, d^{3}e^{3}f^{3}g^{3}, e^{2}, c^{2}d^{5}f^{2}g^{2}, f^{3}g^{3}, e^{3}, g^{2}$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $A_4^2:S_3^2:D_6$ |
| Order: | \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5^3$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \) |
| $\operatorname{Aut}(H)$ | $(C_3\times A_4^2).D_6^2$ |
| $W$ | $C_5^4:D_4:C_2$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $A_4^2:S_3^2:D_6$ |