Properties

Label 62208.ds.12.S
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{2}d^{3}e^{5}f^{3}g, f^{3}g^{3}, f^{2}g^{2}, g^{2}, g^{3}, b^{2}d^{2}e^{3}f^{3}g^{2}, c^{2}d^{5}f^{2}g^{2}, e^{3}f^{3}, d^{3}f^{3}, e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4^2:S_3^2:D_6$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5^3$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$C_5^2\wr C_2:D_4$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(D_6\times C_6^2):S_4$
Normal closure:$(C_2\times C_6^3):S_3^2$
Core:$C_2\times C_6^3$
Minimal over-subgroups:$(C_2\times C_6^3):S_3^2$$(D_6\times C_6^2):S_4$
Maximal under-subgroups:$(C_2\times C_6^3):C_6$$C_3\times C_6^2:S_4$$C_2^4.C_3^3:S_3$$C_6^3.C_2^3$$(C_2\times C_6^2):S_4$$(C_6\times D_6):S_4$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4^2:S_3^2:D_6$