Subgroup ($H$) information
Description: | $(S_3\times C_6^2):S_4$ |
Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ac^{2}d^{3}e^{5}f^{3}g, f^{3}g^{3}, f^{2}g^{2}, g^{2}, g^{3}, b^{2}d^{2}e^{3}f^{3}g^{2}, c^{2}d^{5}f^{2}g^{2}, e^{3}f^{3}, d^{3}f^{3}, e^{2}$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $A_4^2:S_3^2:D_6$ |
Order: | \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_5^3$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \) |
$\operatorname{Aut}(H)$ | $(C_2^2\times C_6^2).D_6^2$ |
$W$ | $C_5^2\wr C_2:D_4$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $12$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $A_4^2:S_3^2:D_6$ |