Properties

Label 62208.cp.36.FD
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times D_6):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,16)(2,12,13,14,11,3)(4,17)(5,9)(6,15,10,8,18,7)(19,24,21,26,25,23)(20,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_6^3):D_6^2$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2:(Q_8\times F_5)$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$C_6^2.(D_6\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2^2\times C_6^2):D_6^2$
Normal closure:$C_2\times A_4^2:S_3^2$
Core:$C_6^2:S_4$
Minimal over-subgroups:$A_4^2:S_3^2$$(S_3\times C_6^2):S_4$$(C_2^3\times C_6^2):D_6$$D_6^2:S_4$
Maximal under-subgroups:$C_6^2:S_4$$(C_6\times D_6):A_4$$C_6^2:S_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$(C_2\times C_6^3):D_6^2$