Properties

Label 62208.cp.12.BK
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7,2)(3,16,6)(4,15,11)(5,8,13)(9,18,12)(10,14,17)(19,21,22)(20,24,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_6^3):D_6^2$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2:(Q_8\times F_5)$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$C_5^2:C_8\times F_5$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2^2\times C_6^2):D_6^2$
Normal closure:$(C_2\times C_6^3):S_3^2$
Core:$C_3\times C_6^2:S_4$
Minimal over-subgroups:$(C_2\times C_6^3):S_3^2$$(D_6\times C_6^2):S_4$$C_6^2.(D_6\times S_4)$
Maximal under-subgroups:$C_3\times C_6^2:S_4$$(C_2\times C_6^3):C_6$$C_2^4.C_3^3:S_3$$C_6^3.C_2^3$$(C_2\times C_6^2):S_4$$(C_6\times D_6):S_4$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$(C_2\times C_6^3):D_6^2$