Subgroup ($H$) information
| Description: | $C_2\times C_4^3$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\langle(5,6)(7,8)(13,14)(15,16)(21,22)(23,24), (13,14)(15,16)(17,19,18,20)(21,24,22,23) \!\cdots\! \rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_4^3:C_2^2:S_4$ |
| Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2\times S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4^2:A_4.C_2^4.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^9.C_2^6:\GL(3,2)$, of order \(5505024\)\(\medspace = 2^{18} \cdot 3 \cdot 7 \) |
| $W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |