Subgroup ($H$) information
Description: | $C_2^2\times C_4^2:C_{16}$ |
Order: | \(1024\)\(\medspace = 2^{10} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left(\begin{array}{rr}
29 & 30 \\
10 & 19
\end{array}\right), \left(\begin{array}{rr}
7 & 24 \\
8 & 15
\end{array}\right), \left(\begin{array}{rr}
31 & 16 \\
16 & 31
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
9 & 8 \\
16 & 25
\end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_4^4.C_{24}$ |
Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2^9.C_2^6.C_2^6.D_6.C_2^4$ |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_4^2:C_6$ |