Properties

Label 6144.bb.384.DV
Order $ 2^{4} $
Index $ 2^{7} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 25 & 16 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4^3\times C_8$
Normalizer:$C_4^4.C_8$
Normal closure:$C_4^4$
Core:$C_2^2$
Minimal over-subgroups:$C_2^3\times C_4$$C_2^3\times C_4$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2^3\times C_4$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2^3$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_2^2\times C_4^2:C_{24}$