Properties

Label 6144.bb.24.CQ
Order $ 2^{8} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4^2\times C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 7 & 24 \\ 8 & 15 \end{array}\right), \left(\begin{array}{rr} 23 & 8 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2^{11}.C_2.C_2^6.S_4$
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4^3\times C_8$
Normalizer:$C_4^4.C_8$
Normal closure:$C_2\times C_4^3\times C_8$
Core:$C_2^2\times C_4\times C_8$
Minimal over-subgroups:$C_2^2\times C_4^2\times C_8$$C_4^3.C_8$$C_4^3.C_8$$C_4^3\times C_8$
Maximal under-subgroups:$C_2^2\times C_4\times C_8$$C_4^2\times C_8$$C_4^2\times C_8$$C_4^2\times C_8$$C_4^2\times C_8$$C_2\times C_4^3$$C_2^2\times C_4\times C_8$$C_2^2\times C_4\times C_8$$C_2^2\times C_4\times C_8$$C_2^2\times C_4\times C_8$$C_2^2\times C_4\times C_8$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^4.A_4$