Properties

Label 6144.bb.1536.Y
Order $ 2^{2} $
Index $ 2^{9} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 24 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4^3\times C_8$
Normalizer:$C_2\times C_4^3\times C_8$
Normal closure:$C_4^3$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$16$
Möbius function not computed
Projective image$C_4^4.C_{24}$