Properties

Label 6050.e.55.c1.i1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{11}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, c^{5}, a^{2}c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{55}:F_{11}$
Order: \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5^2.(C_{20}\times D_4)$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times F_{11}$
Normal closure:$C_{11}:F_{11}$
Core:$C_{11}$
Minimal over-subgroups:$C_{11}:F_{11}$$C_5\times F_{11}$
Maximal under-subgroups:$C_{11}:C_5$$D_{11}$$C_{10}$
Autjugate subgroups:6050.e.55.c1.a16050.e.55.c1.b16050.e.55.c1.c16050.e.55.c1.d16050.e.55.c1.e16050.e.55.c1.f16050.e.55.c1.g16050.e.55.c1.h16050.e.55.c1.j1

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$C_{55}:F_{11}$