Subgroup ($H$) information
| Description: | $C_5\times D_{11}$ |
| Order: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Index: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Generators: |
$a^{5}, c^{5}, c^{11}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{55}:F_{11}$ |
| Order: | \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_5^2.(C_{20}\times D_4)$ |
| $\operatorname{Aut}(H)$ | $C_4\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| $W$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $11$ |
| Möbius function | $1$ |
| Projective image | $C_{11}:F_{11}$ |