Properties

Label 6048.a.63.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\Unitary(2,3)$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{lll}\alpha^{3} & 1 & \alpha^{7} \\ \alpha^{7} & \alpha^{3} & 1 \\ \alpha^{3} & \alpha^{5} & 1 \\ \end{array}\right), \left(\begin{array}{lll}0 & 0 & \alpha \\ 0 & \alpha^{6} & 0 \\ \alpha^{5} & 0 & \alpha^{3} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{2} & \alpha^{6} & \alpha^{7} \\ \alpha^{7} & \alpha^{5} & 1 \\ \alpha^{3} & \alpha^{3} & \alpha^{3} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{5} & \alpha & \alpha^{4} \\ \alpha^{2} & 0 & \alpha^{3} \\ 1 & \alpha^{6} & \alpha^{7} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{6} & 0 & \alpha^{4} \\ 0 & \alpha^{4} & 0 \\ 1 & 0 & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{5} & \alpha^{3} & \alpha^{4} \\ 1 & 0 & \alpha \\ 1 & 1 & \alpha^{7} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $\SU(3,3)$
Order: \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$G(2,2)$, of order \(12096\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$\Unitary(2,3)$
Normal closure:$\SU(3,3)$
Core:$C_1$
Minimal over-subgroups:$\SU(3,3)$
Maximal under-subgroups:$\SL(2,3):C_2$$C_4\wr C_2$$C_3:C_8$

Other information

Number of subgroups in this conjugacy class$63$
Möbius function$-1$
Projective image$\SU(3,3)$