Properties

Label 600.178.20.a1.a1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{15}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, d^{2}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5^2:S_4$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_4\times C_5^2):\GL(2,5)$, of order \(288000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{15}$
Normal closure:$C_5^2:S_4$
Core:$C_5$
Minimal over-subgroups:$C_5:D_{15}$$C_5:S_4$
Maximal under-subgroups:$C_{15}$$D_5$$S_3$
Autjugate subgroups:600.178.20.a1.b1600.178.20.a1.c1600.178.20.a1.d1600.178.20.a1.e1600.178.20.a1.f1

Other information

Number of subgroups in this conjugacy class$20$
Möbius function$1$
Projective image$C_5^2:S_4$