Properties

Label 594.19.3.a1.c1
Order $ 2 \cdot 3^{2} \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{33}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Index: \(3\)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $a, bcd^{22}, d^{3}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^2:D_{33}$
Order: \(594\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}\times C_3^2:\GL(2,3)$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_{33}$, of order \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times D_{33}$
Normal closure:$C_3^2:D_{33}$
Core:$C_3\times C_{33}$
Minimal over-subgroups:$C_3^2:D_{33}$
Maximal under-subgroups:$C_3\times C_{33}$$C_3\times D_{11}$$D_{33}$$C_3\times S_3$
Autjugate subgroups:594.19.3.a1.a1594.19.3.a1.b1594.19.3.a1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:D_{33}$