Properties

Label 58320.s.720.a1.a1
Order $ 3^{4} $
Index $ 2^{4} \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(3\)
Generators: $\langle(7,9,8)(10,12,11)(13,14,15)(16,17,18)(22,23,24)(28,30,29), (1,3,2)(4,6,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, the socle, a semidirect factor, abelian (hence metabelian and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^4:A_6.C_2$
Order: \(58320\)\(\medspace = 2^{4} \cdot 3^{6} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $A_6.C_2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism Group: $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, almost simple, and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:A_6.D_6$, of order \(349920\)\(\medspace = 2^{5} \cdot 3^{7} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$A_6.C_2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^4:A_6.C_2$
Complements:$A_6.C_2$ $A_6.C_2$ $A_6.C_2$
Minimal over-subgroups:$C_3^4:C_5$$C_3^4:C_3$$C_3^2\wr C_2$
Maximal under-subgroups:$C_3^3$$C_3^3$

Other information

Möbius function$0$
Projective image$C_3^4:A_6.C_2$