Properties

Label 5832.od.2.e1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(2\)
Exponent: not computed
Generators: $\langle(10,13,11)(12,14,15), (2,5)(4,8)(6,9)(11,13)(12,16)(14,18)(15,17), (10,11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$W$$\He_3^2:C_2^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\He_3^2:C_2^3$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$\He_3^2:C_2^3$
Maximal under-subgroups:$\He_3^2:C_2$$\He_3^2:C_2$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3^3:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$\He_3^2:C_2^3$