Subgroup ($H$) information
| Description: | $C_1$ |
| Order: | $1$ |
| Index: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Exponent: | $1$ |
| Generators: | |
| Nilpotency class: | $0$ |
| Derived length: | $0$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
| Description: | $\He_3^2:C_2^3$ |
| Order: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.
Quotient group ($Q$) structure
| Description: | $\He_3^2:C_2^3$ |
| Order: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $\He_3^2:C_2^3$ |