Properties

Label 5832.od.1944.g1
Order $ 3 $
Index $ 2^{3} \cdot 3^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(3\)
Generators: $\langle(10,18,15)(11,16,12)(13,17,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4:C_6$
Normalizer:$C_3^3:S_3^2$
Normal closure:$\He_3$
Core:$C_1$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\He_3^2:C_2^3$