Properties

Label 5832.od.18.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,13)(14,15)(17,18), (10,13,11)(12,14,15), (2,9)(3,7)(4,8)(5,6), (1,8,4)(2,3,5)(6,7,9), (1,3,7)(2,6,4)(5,9,8), (10,11,13)(12,14,15)(16,17,18)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Quotient group ($Q$) structure

Description: $C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^4:\GL(2,3)\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$W$$\He_3^2:C_2^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\He_3^2:C_2^3$
Complements:$C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$ $C_3:S_3$
Minimal over-subgroups:$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3:S_3^3$
Maximal under-subgroups:$C_3^2\wr C_2$$C_3^3:S_3$$C_3:S_3^2$$C_3:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-27$
Projective image$\He_3^2:C_2^3$