Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(1,7,11)(2,14,13)(3,5,17)(4,8,15)(6,10,18)(9,16,12), (2,13,14)(4,15,8)(6,18,10)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $\He_3^2:C_2^3$ |
| Order: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_3^4:C_2^3$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $(C_3^2\times C_6^2).\GL(2,3)\wr C_2$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \) |
| Outer Automorphisms: | $S_4^2:D_4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_3^2.Q_8.D_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_3^4.C_3:S_3.C_2$ | |||||
| Normalizer: | $\He_3^2:C_2^3$ | |||||
| Minimal over-subgroups: | $C_3^3$ | $C_3^3$ | $C_3^3$ | $C_3\times C_6$ | $C_3\times S_3$ | $C_3\times C_6$ |
| Maximal under-subgroups: | $C_3$ | $C_3$ | $C_3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-5832$ |
| Projective image | $C_2\times C_3^3:S_3^2$ |