Properties

Label 5832.he.648.a1
Order $ 3^{2} $
Index $ 2^{3} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\langle(1,7,11)(2,14,13)(3,5,17)(4,8,15)(6,10,18)(9,16,12), (2,13,14)(4,15,8)(6,18,10)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^4:C_2^3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $(C_3^2\times C_6^2).\GL(2,3)\wr C_2$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \)
Outer Automorphisms: $S_4^2:D_4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_3^2.Q_8.D_6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4.C_3:S_3.C_2$
Normalizer:$\He_3^2:C_2^3$
Minimal over-subgroups:$C_3^3$$C_3^3$$C_3^3$$C_3\times C_6$$C_3\times S_3$$C_3\times C_6$
Maximal under-subgroups:$C_3$$C_3$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-5832$
Projective image$C_2\times C_3^3:S_3^2$