Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(1,7,11)(2,13,14)(3,5,17)(4,15,8)(6,18,10)(9,16,12)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $\He_3^2:C_2^3$ |
| Order: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2\times C_3^3:S_3^2$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_6^2:S_3^2.\POPlus(4,3)$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \) |
| Outer Automorphisms: | $C_2\wr S_3^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_3^2.Q_8.D_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_3^4.C_3:S_3.C_2$ | ||||||
| Normalizer: | $\He_3^2:C_2^3$ | ||||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $S_3$ | $C_6$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $\He_3^2:C_2^3$ |