Properties

Label 5832.he.1944.b1
Order $ 3 $
Index $ 2^{3} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(3\)
Generators: $\langle(1,7,11)(2,13,14)(3,5,17)(4,15,8)(6,18,10)(9,16,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2\times C_3^3:S_3^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_6^2:S_3^2.\POPlus(4,3)$, of order \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Outer Automorphisms: $C_2\wr S_3^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_3^2.Q_8.D_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4.C_3:S_3.C_2$
Normalizer:$\He_3^2:C_2^3$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$S_3$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$\He_3^2:C_2^3$