Properties

Label 58080.m.3.a1.a1
Order $ 2^{5} \cdot 5 \cdot 11^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Index: \(3\)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Generators: $a^{5}, b^{6}c^{4}d^{16}, cd^{32}, d^{11}, d^{22}, d^{4}, b^{3}, a^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{11}^2:C_{40}:D_6$
Order: \(58080\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_2.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_2^3.C_5.C_2^5$
$W$$C_2\times D_{11}^2:C_{10}$, of order \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Normal closure:$C_{11}^2:C_{40}:D_6$
Core:$C_{11}^2:(C_2\times C_{40})$
Minimal over-subgroups:$C_{11}^2:C_{40}:D_6$
Maximal under-subgroups:$C_{11}^2:(C_2\times C_{40})$$D_{44}:F_{11}$$C_{11}:(Q_8\times F_{11})$$C_{11}^2:(C_5\times \SD_{16})$$C_{11}^2:(C_5\times \SD_{16})$$C_{11}^2:(C_5\times \SD_{16})$$C_{11}^2:(C_5\times \SD_{16})$$(C_{11}\times C_{44}).D_4$$C_{10}\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image not computed