Properties

Label 5760.fv.96.b1.b1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{30}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,2)(9,12,13,11,10), (1,2,3), (5,6)(7,8), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{30}$
Normalizer:$C_{12}:D_{10}$
Normal closure:$C_2^4:\GL(2,4)$
Core:$C_2^2$
Minimal over-subgroups:$C_2^3:C_{30}$$C_6\times D_{10}$$C_{15}:D_4$$D_4\times C_{15}$
Maximal under-subgroups:$C_{30}$$C_{30}$$C_2\times C_{10}$$C_2\times C_6$
Autjugate subgroups:5760.fv.96.b1.a1

Other information

Number of subgroups in this conjugacy class$24$
Möbius function$0$
Projective image$C_2^4:\GL(2,4)$