Properties

Label 5760.fv.240.bj1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,6)(7,8)(11,13,12), (5,7,6,8)(9,10)(12,13), (5,7,6,8), (5,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_4\times A_4$
Normalizer:$S_3\times D_4\times A_4$
Normal closure:$C_4\times A_5$
Core:$C_4$
Minimal over-subgroups:$C_4\times A_5$$S_3\times C_{12}$$S_3\times D_4$$C_4\times D_6$$S_3\times D_4$
Maximal under-subgroups:$D_6$$C_{12}$$C_3:C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$4$
Projective image$C_2^4:\GL(2,4)$