Properties

Label 5760.fv.24.b1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times A_5$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(5,8,6,7)(9,10)(11,12), (5,8,6,7)(9,13,11), (5,7,6,8), (5,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_2\times A_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_4\times A_4$
Normalizer:$D_4\times A_4\times A_5$
Complements:$C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$ $C_2\times A_4$
Minimal over-subgroups:$C_{12}\times A_5$$D_4\times A_5$$C_2\times C_4\times A_5$$D_4\times A_5$
Maximal under-subgroups:$C_2\times A_5$$C_4\times A_4$$C_4\times D_5$$C_4\times S_3$

Other information

Möbius function$-4$
Projective image$C_2^4:\GL(2,4)$