Properties

Label 576.8418.8.b1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,12), (9,10), (1,3,5)(2,6,4), (7,8)(9,10), (2,4,6)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, and abelian (hence metabelian and an A-group).

Ambient group ($G$) information

Description: $D_6^2:C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$D_6^2:C_2^2$
Complements:$D_4$
Minimal over-subgroups:$C_6^2:C_2^2$$C_6^2:C_2^2$$C_6^2:C_2^2$
Maximal under-subgroups:$C_6^2$$C_6^2$$C_6^2$$C_2^2\times C_6$$C_2^2\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed