Subgroup ($H$) information
| Description: | $C_2\times C_{24}$ | 
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Generators: | $b, d^{12}, d^{3}, d^{8}, d^{6}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3\times Q_{16}.A_4$ | 
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_8.(D_6\times S_4)$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) | 
| $\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) | 
| $\operatorname{res}(S)$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $D_4\times A_4$ | 
