Properties

Label 576.5524.6.g1.b1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab, d^{3}, c, a^{2}, a^{4}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_{12}.S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:C_3.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times A_4:C_8$
Normal closure:$C_{12}.S_4$
Core:$C_4\times A_4$
Minimal over-subgroups:$C_{12}.S_4$$C_2\times A_4:C_8$
Maximal under-subgroups:$C_4\times A_4$$C_2^2:C_8$$C_3:C_8$
Autjugate subgroups:576.5524.6.g1.a1576.5524.6.g1.c1576.5524.6.g1.d1576.5524.6.g1.e1576.5524.6.g1.f1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6:S_4$