Properties

Label 576.5524.2.b1.b1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab, c, d^{2}, a^{2}, d^{3}, a^{4}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_{12}.S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:C_3.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times C_{12}.S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_{12}.S_4$
Maximal under-subgroups:$C_{12}\times A_4$$C_{12}.D_4$$A_4:C_8$$A_4:C_8$$A_4:C_8$$C_3^2:C_8$
Autjugate subgroups:576.5524.2.b1.a1

Other information

Möbius function$-1$
Projective image$C_6:S_4$