Properties

Label 576.5251.8.a1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{12}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $c^{3}, c^{6}, d^{3}, c^{4}d^{2}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), abelian (hence metabelian and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $(C_6\times C_{12}).D_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_6^2.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_6\times C_{12}$
Normalizer:$(C_6\times C_{12}).D_4$
Minimal over-subgroups:$C_3^2:C_4^2$$C_{12}:C_{12}$$C_6^2.C_2^2$
Maximal under-subgroups:$C_6^2$$C_3\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$

Other information

Möbius function$0$
Projective image$S_3^2:C_2^2$