Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(64\)\(\medspace = 2^{6} \) |
Exponent: | \(3\) |
Generators: |
$cd^{8}, d^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_6\times C_{12}).D_4$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_4.D_8$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Automorphism Group: | $C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \) |
Outer Automorphisms: | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3\times C_6).C_2^6.C_2^2$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_6\times C_{12}$ | ||
Normalizer: | $(C_6\times C_{12}).D_4$ | ||
Complements: | $C_4.D_8$ | ||
Minimal over-subgroups: | $C_3\times C_6$ | $C_3\times C_6$ | $C_3\times C_6$ |
Maximal under-subgroups: | $C_3$ | $C_3$ |
Other information
Möbius function | $0$ |
Projective image | $(C_6\times C_{12}).D_4$ |