Properties

Label 576.1921.1.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times C_{12}).D_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, b^{4}, d^{6}, b, b^{4}d^{9}, d^{4}, cd^{8}, b^{6}d^{9}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $(C_6\times C_{12}).D_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6).C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $(C_3\times C_6).C_2^6.C_2^2$
$W$$S_3^2:C_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_6\times C_{12}).D_4$
Complements:$C_1$
Maximal under-subgroups:$C_6^2.C_2^3$$C_6.(S_3\times C_8)$$(C_3\times C_{12}):C_8$$C_4.D_8$

Other information

Möbius function$1$
Projective image$S_3^2:C_4$